

# Exercise Session 7 IESM Fall 2024-2025

Yuri, Salomé, Sophia, Andrea, Qihao, Junwu

November 26, 2024



#### Course Reminders

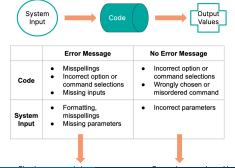
#### Course Reminders:

- Exercises 9 will not have interviews and will have due dates in January. Plus, we only keep the best grades of 8 of 9 reports:
- Q&A session on Tuesday 10 December. Please send questions in advance via email/forum to help us prepare the Q&A session
- Written exam on Monday 16 December, same format of first written exam. Topics: everything not included in the 1st exam (all post-HF methods and DFT).



3 / 9

#### Exercise 7 - Troubleshooting, Pitfalls, Traps


In this set of exercises, we will practice recognizing and accounting for common problems we face in computational chemistry. Get excited for error messages.





# Coding & Input Errors

- In the first part of exercise 7, we'll hunt for output mistakes
  which typically arrive via two vectors: the coding or the system
  input.
- By the end of the session we will take  $\sim 10$  min to discuss this part together! So try to solve and think about it, but don't spent the full 2h on this part if you get stuck;)





#### Accounting for Dispersion Effects

- Sometimes we code well and provide a viable system input but we didn't carefully evaluate the methods or tools we need to describe our system and its properties adequately.
- In the second part of exercise 7, we'll evaluate the types of systems easily described by DFT and which types of systems may need special consideration.



# Accounting for Dispersion Effects (continued)

 Some functionals are better at accounting for dispersion interactions:

$$E_{\rm disp} \propto -C_6/R^6$$

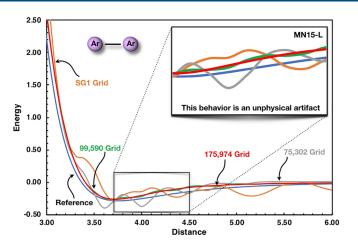
 Some functionals are designed to take dispersion effects into account:

$$v_C^{nl}(\mathbf{r}) = \int f(\mathbf{r}, \mathbf{r}') d\mathbf{r}'$$

 Other functionals can be improved with corrective functions. D3 and BJ corrections are popular. Here's a D3 correction format:

$$E_{\text{B3LYP-D3}} = E_{\text{B3LYP}} + E_{\text{D3, 2-body}} + E_{\text{ATM, 3-body}}$$




## Choosing Integration Grid Size

- Additionally, we can benefit from thinking about how our software performs a calculation and benchmark some of the software parameters.
- So in the last part of the exercise we evaluate our integration grid parameters. The density of the integration grid can become a crucial factor in an accurate calculation, especially for newer DFT functionals.
- "The integration is usually performed on a three-dimensional real-space grid obtained by partitioning the multicenter integral into atomic contributions using a nuclear weight function."
- "The Lebedev-Euler-Maclaurin integration grids are represented by two numbers—n,m—with n denoting the number of radial points and m the number of angular points."

Images and quoted text from: Morgante, M and Peverati, R. Int. J. Quantum Chem. 2020. https://doi.org/10.1002/qua.26332



## Choosing Integration Grid Size (continued)



Images and quoted text from: Morgante, M and Peverati, R. Int. J. Quantum Chem. 2020. https://doi.org/10.1002/qua.26332

#### Exercise 7 - Tips

#### Tips!

#### Some suggestions:

- Troubleshoot together. It's more fun and effective! And realistic!
- For the first part of the exercises, you can write the report by describing or showing the error and then describing how you solved it.
- Some calculations make take time to run. Calculations for the second part of Ex 7 can be done collaboratively using the same sheet as we did for exercise 6 (also posted on Moodle).